Séminaire
 
Fantom Tag

Formation - Machine Learning - La synthèse

Se préparer à la mise en oeuvre en Entreprise

  • Présentiel ou classe à distance
  • Fondamental
  • Blended
PRESENTIEL OU CLASSE A DISTANCE
Durée
2 jours (14 heures)
activités à distance

Prix
1 945,00 €  HT

Référence
SEM87
S'inscrire
Dans vos locaux ou à distance
Durée
2 jours (14 heures)

Forfait intra - En savoir plus
3 850,00€ HT
Prix pour un groupe de 12 personnes max

Référence
SEM87
Formation à la demande
Cette thématique vous intéresse ?
Nos experts conçoivent votre formation
sur-mesure !
Le machine Learning joue un rôle essentiel dans les évolutions du Big Data. Si vous préparez la mise en oeuvre d'une solution d'intelligence artificielle dans votre établissement, l'un de vos objectifs est de garantir une analyse et interprétation optimales des informations clés. Disposant d'un panel de mécanismes et algorithmes, le Machine Learning est en mesure de suivre les évolutions de ses propres analyses pour en définir des tendances, fournir des prédictions et soumettre des prescriptions. En respectant une démarche pédagogique particulièrement méthodique, ce séminaire permettra aux décideurs informatiques et marketing de disposer des repères fondamentaux facilitant le lancement de tout projet intégrant ces nouveaux éléments (Traitement intelligemment des données).
Lire la suite
Pour qui ?

A qui s'adresse cette formation ?

Pour qui

  • Dirigeants, directeurs informatiques
  • Directeurs projets
  • Toute personne souhaitant comprendre les mécanismes et les bénéfices potentiels du Machine Learning pour diriger ou gérer la préparation d'un déploiement de solution d'intelligence artificielle dans l'entreprise des secteurs privé et public

Prérequis

  • Aucun.
Programme

Le programme

1 - 1ère partie : Du Big Data au Machine Learning

  • Histoire du Big Data et évolution vers les Machine Learning
  • Comprendre les concepts d'Intelligence Artificielle et d'apprentissage automatique (Machine Learning)
  • Des exemples d'usages pour divers directions métier dans divers secteurs : marketing, vente, logistique, RH, santé, transport, la sécurité, l'énergie, la distribution, le luxe, le tourisme...
  • Les résultats et bénéfices attendus

2 - 2ème partie : Les mécanismes du machine Learning

    3 - Sur quoi porte le machine Learning ?

    • Les données structurées, semi-structurées et non structurées
    • Nature statistique des données (qualitatives ou quantitatives)
    • Les objets connectés (IoT)

    4 - Les différents types d'apprentissage en machine Learning

    • Passer de l'analyse descriptive à l'analyse prédictive puis prescriptive
    • La typologie des algorithmes (Apprentissage supervisé : répéter un exemple- Apprentissage non supervisé : découvrir les données - Reinforcement Learning : optimisation d'une récompense - Autres types d'apprentissage (par transfert, séquentiel, actif...)
    • Le lien avec les mathématiques, le big data, l'intelligence artificielle et le machine Learning

    5 - Les algorithmes du machine Learning

    • Régression linéaire simple et multiple
    • Régression polynomiale
    • Séries temporelles
    • Régression logistique et applications en scoring
    • Classification hiérarchique et non hiérarchique (KMeans)
    • Classification par arbres de décision ou approche Naïve Bayes
    • Ramdom Forest (développement des arbres de décision)
    • Gradiant Boosting
    • Réseaux de neurones
    • Machine à support de vecteurs
    • Deep Learning : exemples et raisons du succès actuel
    • Text Mining : analyse des corpus de données textuelles

    6 - 3ème partie : La démarche de traitement

      7 - La collecte et la préparation des données 

      • Analyse exploratoire : Préparation d'un jeu de données - Nettoyage des données et valeurs manquantes : Data cleaning
      • Identification des corrélations

      8 - La collecte et la préparation des données : Feature engineering

      • Apprendre à réduire la complexité d'un problème pour le résoudre par analyse des composantes principales
      • Comment réduire la dimension et sélectionner les variables pertinentes ?
      • Détection et correction des valeurs aberrantes
      • Data augmentation : création de nouvelles variables pour aider à résoudre le problème

      9 - Procédure d'entraînement et d'évaluation des algorithmes

      • Séparation du jeu de données en plusieurs : entraînement, test et validation
      • Techniques de bootstrap (bagging)
      • Exemple de la validation croisée
      • Définition d'une métrique de performance
      • Descente de gradient stochastique (minimisation de la métrique)
      • Courbes ROC et de lift pour évaluer et comparer les algorithmes
      • Matrice de confusion : faux positifs et faux négatifs

      10 - Mise en production d'un algorithme de machine Learning

      • Description d'une plateforme Big Data
      • Principe de fonctionnement des API
      • Du développement à la mise en production
      • Stratégie de maintenance corrective et évolutive
      • Évaluation du coût de fonctionnement en production

      11 - Comment fonctionne le machine Learning ?

      • Les outils du marché pour le traitement de la donnée
      • Les logiciels traditionnels (SAS, SPSS, Stata...) et leur ouverture à l'Open Source
      • Les API en ligne (IBM Watson, Microsoft Cortana Intelligence...)

      12 - Comment mettre en oeuvre le machine Learning ?

      • Le cycle de vie d'un projet de machine Learning
      • Protection et droit d'accès aux données personnelles
      • L'accompagnement aux changements nécessaire (formation, communication, management)

      13 - 4ème partie : Les acteurs internes et externes à impliquer, à considérer

      • Les acteurs d'un projet et post-projet
      • Nouveaux rôles dans l'entité : chief data officer, data protection officer, data engineer, data scientist, data analyst, data miner...
      • Les prestataires externes et l'écosystème
      • Dans votre établissement, qui est concerné par le Machine Learning et l'Intelligence Artificielle

      14 - 5ème partie : La RoadMap d'un déploiement d'une solution de Machine Learning

      • La roadmap de la mise en oeuvre du machine Learning (avant, pendant et après le projet)
      • Mise en place d'un Proof Of Concept
      • Les spécificités d'un projet Machine Learning
      • Le rétro planning du ou des recrutements et leurs incidences sur les projets

      15 - 6ème partie : Valider sa préparation au Machine Learning

      • CheckList, bonnes pratiques
      • Échanges autour des spécificités métiers et activité des entreprises et organisations de chaque participant
      Après la session
      • Des vidéocasts pour revenir sur les points clés de la formation

      Evaluation

      • Pendant la formation, le formateur évalue la progression pédagogique des participants via des QCM, des mises en situation et des travaux pratiques. Les participants passent un test de positionnement avant et après la formation pour valider leurs compétences acquises.
      Objectifs

      Les objectifs de la formation

      • Positionner le Machine Learning dans le domaine du Big Data
      • Connaître le processus de traitement du Machine Learning dans la chaîne de traitement de la donnée
      • Comprendre les types d'usages du Machine Learning dans l'organisation
      • Valider les clés de réussite d'un projet autour du Machine Learning
      Points forts

      Les points forts de la formation

      • Une approche méthodique du sujet s'appuyant continuellement sur des cas concrets, "success stories" sur le marché.
      • Des ateliers adaptés aux métiers et besoins du public ciblé par ce séminaire visant l'appropriation des bonnes approches, pratiques et réflexions de préparations.
      • Les retours d'expériences d'un expert pour tirer parti des différentes évolutions.

      Qualité des formations

      ib Cegos est certifié Iso 9001 et Qualiopi.

      Sessions

      Mise à jour le 18/09/2024
      • 1 945,00 € HT
        Places disponibles
        S'inscrire
      • 1 945,00 € HT
        Places disponibles
        S'inscrire
        Paris
        Tour Atlantique / 1 place de la Pyramide La Défense 9
        92800 Puteaux
      Formation - Machine Learning - La synthèse