Menu Recherche Panier
(...)
Vous êtes ici : Accueil > Formation Google Cloud Platform - Ingénierie de données
Technique

Formation Google Cloud Platform - Ingénierie de données

Concevoir et développer des systèmes de traitement de données sur GCP

Si les bénéfices liés à l’adoption du Cloud sont aujourd’hui nombreux (disponibilité, agilité, adaptabilité, gains financiers, ...), l’une des principales vertus de cette révolution est de pouvoir accéder à des outils et à des puissances de traitement qu’il serait bien souvent difficile de s’offrir (et de rentabiliser) dans un modèle traditionnel. C’est notamment dans le cadre du traitement et de l’analyse de très importants volumes de données (Big Data) que se mesure sans doute le mieux cet avantage. Comme tous les grands acteurs du Cloud, Google propose ainsi de nombreux services dédiés au traitement et à l’analyse dite de type Big Data ainsi que des solutions permettant de tirer par exemple parti du Machine Learning. Les participants à cette formation apprendront à concevoir des systèmes de traitement de données, à créer des pipelines de données, à réaliser des traitements sur des données structurées et non structurées et enfin à exploiter ces données grâce à de puissants outils d’analyse.

Objectifs de cette formation

Google Cloud Platform - Ingénierie de données
  • Savoir concevoir et déployer de pipelines et d’architectures pour le traitement des données
  • Comprendre comment obtenir des informations métier à partir de très grands ensembles de données à l'aide de Google BigQuery
  • Savoir tirer parti des données non structurées à l'aide de Spark et des API de Machine Learning sur Cloud Dataproc
  • Comprendre comment activer Instant Insights à partir des données par flux

Public

  • Développeurs expérimentés en charge des transformations du Big Data

Pré-requis

  • Avoir suivi la formation "Google Cloud Platform - Les fondamentaux du Big Data et du Machine Learning" (CC381) ou bénéficier d'une expérience équivalente
  • Maîtriser les principes de base des langages de requête courants tels que SQL
  • Avoir de l'expérience en modélisation, extraction, transformation et chargement des données
  • Savoir développer des applications à l'aide d'un langage de programmation courant tel que Python
  • Savoir utiliser le Machine Learning et/ou les statistiques
  • Pour suivre cette formation dans des conditions optimales, nous vous recommandons de venir en formation avec un ordinateur portable
  • Disposez-vous des compétences nécessaires pour suivre cette formation ? Testez-vous !
Programme détaillé

Introduction à l’ingénierie des données

  • Explorez le rôle d’un data engineer
  • Analyser les défis d’ingénierie des données
  • Introduction à BigQuery
  • Data lakes et data warehouses
  • Démo: requêtes fédérées avec BigQuery
  • Bases de données transactionnelles vs data warehouses
  • Démo: recherche de données personnelles dans votre jeu de données avec l’API DLP
  • Travailler efficacement avec d’autres équipes de données
  • Gérer l’accès aux données et gouvernance
  • Construire des pipelines prêts pour la productionEtude de cas d’un client GCP
  • Lab: Analyse de données avec BigQuery

Construire un Data Lake

  • Introduction aux data lakes
  • Stockage de données et options ETL sur GCP
  • Construction d’un data lake à l’aide de Cloud Storage
  • Démo: optimisation des coûts avec les classes et les fonctions cloud de Google Cloud Storage
  • Sécurisation de Cloud Storage
  • Stocker tous les types de données
  • Démo: exécution de requêtes fédérées sur des fichiers Parquet et ORC dans BigQuery
  • Cloud SQL en tant que data lake relationnel

Construire un Data Warehouse

  • Le data warehouse moderneIntroduction à BigQuery
  • Démo: Requêter des TB + de données en quelques secondes
  • Commencer à charger des données
  • Démo: Interroger Cloud SQL à partir de BigQuery
  • Lab: Chargement de données avec la console et la CLI
  • Explorer les schémas
  • Exploration des jeux de données publics BigQuery avec SQL à l’aide de INFORMATION_SCHEMA
  • Conception de schéma
  • Démo: Exploration des jeux de données publics BigQuery avec SQL à l’aide de INFORMATION_SCHEMA
  • Champs imbriqués et répétés dans BigQuery
  • Lab: tableaux et structures
  • Optimiser avec le partitionnement et le clustering
  • Démo: Tables partitionnées et groupées dans BigQuery
  • Aperçu: Transformation de données par lots et en continu

Introduction à la construction de pipelines de données par lots EL, ELT, ETL

  • Considérations de qualité
  • Comment effectuer des opérations dans BigQuery
  • Démo: ETL pour améliorer la qualité des données dans BigQuery
  • Des lacunes
  • ETL pour résoudre les problèmes de qualité des données

Exécution de Spark sur Cloud Dataproc

  • L’écosystème Hadoop
  • Exécution de Hadoop sur Cloud Dataproc GCS au lieu de HDFS
  • Optimiser Dataproc
  • Atelier: Exécution de jobs Apache Spark sur Cloud Dataproc

Traitement de données sans serveur avec Cloud Dataflow

  • Cloud Dataflow
  • Pourquoi les clients apprécient-ils Dataflow?
  • Pipelines de flux de données
  • Lab: Pipeline de flux de données simple (Python / Java)
  • Lab: MapReduce dans un flux de données (Python / Java)
  • Lab: Entrées latérales (Python / Java)
  • Templates Dataflow
  • Dataflow SQL

Gestion des pipelines de données avec Cloud Data Fusion et Cloud Composer

  • Création visuelle de pipelines de données par lots avec Cloud Data Fusion: composants, présentation de l’interface utilisateur, construire un pipeline, exploration de données en utilisant Wrangler
  • Lab: Construction et exécution d’un graphe de pipeline dans Cloud Data Fusion
  • Orchestrer le travail entre les services GCP avec Cloud Composer - Apache Airflow Environment: DAG et opérateurs, planification du flux de travail
  • Démo : Chargement de données déclenché par un événement avec Cloud Composer, Cloud Functions, Cloud Storage et BigQuery
  • Lab: Introduction à Cloud Composer

Introduction au traitement de données en streaming

  • Traitement des données en streaming

Serverless messaging avec Cloud Pub/Sub

  • Cloud Pub/Sub
  • Lab: Publier des données en continu dans Pub/Sub

Fonctionnalités streaming de Cloud Dataflow

  • Fonctionnalités streaming de Cloud Dataflow
  • Lab: Pipelines de données en continu

Fonctionnalités Streaming à haut débit BigQuery et Bigtable

  • Fonctionnalités de streaming BigQuery
  • Lab: Analyse en continu et tableaux de bord
  • Cloud Bigtable
  • Lab: Pipelines de données en continu vers Bigtable

Fonctionnalité avancées de BigQuery et performance

  • Analytic Window Functions
  • Utiliser des clauses With
  • Fonctions SIG
  • Démo: Cartographie des codes postaux à la croissance la plus rapide avec BigQuery GeoViz
  • Considérations de performance
  • Lab: Optimisation de vos requêtes BigQuery pour la performance
  • Lab: Création de tables partitionnées par date dans BigQuery

Introduction à l’analytique et à l’IA

  • Qu’est-ce que l’IA?
  • De l’analyse de données ad hoc aux décisions basées sur les données
  • Options pour modèles ML sur GCP

API de modèle ML prédéfinies pour les données non structurées

  • Les données non structurées sont difficiles à utiliser
  • API ML pour enrichir les données
  • Lab: Utilisation de l’API en langage naturel pour classer le texte non structuré

Big Data Analytics avec les notebooks Cloud AI Platform

  • Qu’est-ce qu’un notebook
  • BigQuery Magic et liens avec Pandas
  • Lab: BigQuery dans Jupyter Labs sur IA Platform

Pipelines de production ML avec Kubeflow

  • Façons de faire du ML sur GCP
  • Kubeflow AI Hub
  • Lab: Utiliser des modèles d’IA sur Kubeflow

Création de modèles personnalisés avec SQL dans BigQuery ML

  • BigQuery ML pour la construction de modèles rapides
  • Démo: Entraîner un modèle avec BigQuery ML pour prédire les tarifs de taxi à New York
  • Modèles pris en charge
  • Lab: Prédire la durée d’une sortie en vélo avec un modèle de régression dans BigQuery ML
  • Lab: Recommandations de film dans BigQuery ML

Création de modèles personnalisés avec Cloud AutoML

  • Pourquoi Auto ML?
  • Auto ML Vision
  • Auto ML NLP
  • Auto ML Tables

Les plus de cette formation

Google Cloud Platform - Ingénierie de données
  • Une introduction pratique et complète à la conception et au développement de systèmes de traitement de données sur Google Cloud Platform.
  • Une formation rythmée durant laquelle s'alternent les phases d'apports théoriques, d'échanges, de partages d'expériences et de mises en situation.
  • Une formation animée par un formateur certifié Google Cloud Platform.
  • La qualité d'une formation officielle Google (support de cours en anglais).
Modalités
Cette formation proposée en interentreprises est également accessible à distance.
Si aucune date à distance n'est signalée par le pictogramme formation accessible à distance, contactez notre Service Conseil Clients au 0 825 07 6000.

Informations

Dimension Digitale

  • Durée : 4 Jours (28h)
  • Tarif : 3 090 € HT
  • Réf. : CC401
  • Réf. éditeur : GCP200-DE


Dates des sessions

Bon à savoir...













= une réponse possible
= plusieurs réponses possibles

Vous n'avez pas répondu à toutes les questions !
Vous avez % de bonnes réponses, vous pouvez donc suivre cette formation.
Vous avez % de bonnes réponses.
Nous vous invitons à contacter nos Conseillers Formation au 0825 07 6000 afin qu'ils vous orientent vers une formation plus adaptée à vos connaissances.